大道无垠之奇偶平行空间 - 第三百八十八篇 古小龙-龙冰雪-水柔二十六
中国东部和西部在第四纪冰期时的表现形式是不一样的,东部地区不具备发育成山岳冰川的水、热和地形条件,只是处于一个气候较寒冷的时期,李四光所确认的东部古冰川遗迹实非冰川成因,如把泥石流堆积误认为冰碛物等;东部地区第四纪冰期系列,除大理冰期外,其他冰期均缺乏根据。
冰期对全球的影响是显著的。一、大面积冰盖的存在改变了地表水体的分布。晚新生代大冰期时,水圈水分大量聚集于陆地而使全球海平面大约下降了100米。如果现今地表冰体全部融化,则全球海平面将会上升80~90米,世界上众多大城市和低地将被淹没。
三、冰期时的大冰盖厚达数千米,使地壳的局部承受着巨大压力而缓慢下降,有的被压降100~200米,南极大陆的基底就被降于海平面以下。北欧随着第四纪冰盖的消失,地壳则缓慢在上升。这种地壳均衡运动至今仍在继续着。
四、冰期改变了全球气候带的分布,导致大量喜暖性动植物种灭绝。
七次大冰期冰川波动一般包括冰舌进退(其特征时间为101a)和冰川物质平衡,零平衡线高度变化(其特征时间为100a)等几项内容,它们均与短气候变化紧密相联。近40多年以内是各种地学资料最多的年代,可以进行较仔细的讨论。有些气候学家认为,在这段时间里出现过两次气候突变,一次在1960年代中,一次在1980年代初。或者说,可以将此40多年以内的气候分为三个时段。以下将1960年代中至1970年代末这一时段简称为70年代,重点讨论此时段的冰川与气候波动及其可能原因。
70年代是北半球的低温时段(南半球为高温时段),中国大部份地区是低温少雨时段,青藏高原积雪面积亦变小。可是由于地形性热力环流的调节,使高海拔区在该时段的降水反略有增加,于是前进冰川的比例大为增加。这一点与&小冰期&的情形颇为相似。
70年代是地球自转的慢段,是太阳黑子的相对低值时段,也是中国大陆地震多发的时段。这些特点均与&小冰期&相似。
从这些资料来看,一旦蓝色星球遭到类似小行星的撞击,特别是直径大于一千米以上的小行星撞击,则会给蓝色星球带去致命的毁灭性打击,将会造成毁灭蓝色星球所有生物的巨大冰期,摧毁蓝色星球滔天海啸......等等。
小行星带是银河太阳系内介于火星和木星轨道之间的小行星密集区域,由已经被编号的120,437颗小行星统计得到,98.5%的小行星都在此处被发现。
由于小行星带是小行星最密集的区域,估计为数多达50万颗,这个区域因此被称为主带。距离太阳约2.173.64天文单位的空间区域内,聚集了大约50万颗以上的小行星,形成了小行星带。这么多小行星能够被凝聚在小行星带中,除了太阳的引力作用以外,木星的引力起着更大的作用。
小行星带由原始太阳星云中的一群星子(比行星微小的行星前身)形成。但是,因为木星的重力影响,阻碍了这些星子形成行星,造成许多星子相互碰撞,并形成许多残骸和碎片。小行星带内最大的三颗小行星分别是智神星、婚神星和灶神星,平均直径都超过400公里;在主带中仅有一颗矮行星—谷神星,直径约为950公里;其余的小行星都较小,有些甚至只有尘埃大小。
小行星带的物质非常稀薄,已经有好几艘太空船安全通过而未曾发生意外。在主带内的小行星依照它们的光谱和主要形式分成三类:碳质、硅酸盐和金属。
另外,小行星之间的碰撞可能形成拥有相似轨道特征和成色的小行星族,这些碰撞也是产生黄道光的尘土的主要来源。
1766年德国天文学家提丢斯(j.titius)偶然发现一个数列:(n+4)/10,将n=0,3,6,12,……代入,可相当准确地给出各颗大行星与太阳的实际距离。这件事起初未引起人们的注意,后来柏林天文台的台长波德(j.bode)得知后将它发表,乃为天文界所知。在1781年发现天王星之后,进一步证实公式有效,波德于是提出在火星和木星轨道之间也许还有一颗行星。
1801年,西西里和皮亚齐(g.plazzi)在例行的天文观测中偶然发2.77au处有个小天体,即把它命名为谷神星(ceres)。
1802年,天文学家奥伯斯(h.olbere)在同一区域内又发现另一小行星,随后命名为智神星(pallas)。威廉·赫歇尔认为这些天体是一颗行星被毁坏后的残余物。到了1807年,在相同的区域内又增加了第三颗婚神星和第四颗灶神星。由于这些天体的外观类似恒星,威廉·赫歇尔就采用希腊文中的语根aster(似星的)命名为asteroid,中文则译为小行星。
拿破仑战争结束了小行星带发现的第一个阶段,一直到1845年才发现第五颗小行星义神星。紧接着,新小行星发现的速度急速增加,到了1868年中发现的小行星已经有100颗,而在1891年马克斯·沃夫引进了天文摄影,更加速了小行星的发现。
1923年,小行星的数量是1,000颗,1951年到达10,000颗,1982年更高达100,000颗。现代的小行星巡天系统使用自动化设备使小行星的数量持续增加。
在小行星带发现后,必须要计算它们的轨道元素。1866年,丹尼尔·柯克伍德宣布由太阳算起,在某些距离上是没有小行星存在的空白区域,而在这些区域上绕太阳公转的轨道周期与木星的公转周期有简单的整数比。柯克伍德认为是木星的摄动导致小行星从这些轨道上被移除。
在1918年,日本天文学家平山清次注意到小行星带上一些小行星的轨道有相似的参数,并由此形成了小行星族。到了1970年代,观察小行星的颜色发展出了分类的系统,三种最常见的类型是c型(碳质)、s型(硅酸盐)和m型(金属)。2006年,天文学家宣布在小行星带内发现了彗星的族群,而且推测这些彗星可能是地球上海洋中水的来源。
在太阳系形成初期,因吸积过程的碰撞普遍,造成小颗粒逐渐聚集形成更大的丛集,一旦聚集到足够的质量(即所谓的微星),便能用重力吸引周围的物质。这些星子就能稳定地累积质量成为岩石行星或巨大的。
小行星带的形成之谜不知道何时才能破解。不过,越来越多的天文学家认为,小行星记载着太阳系行星形成初期的信息。因此,小行星的起源是研究太阳系起源问题中重要的和不可分割的一环。
添加书签
搜索的提交是按输入法界面上的确定/提交/前进键的